
 MethaneScan  ®  Technical Brief 
 Estimation Methods 
 A Note on Peer-Review Standards 

 We are constantly incorpora�ng new data and peer-reviewed prac�ces while we drive the development of 
 state-of-the-art es�ma�on, a�ribu�on, and uncertainty quan�fica�on methods, se�ng the highest industry 
 standard for accurate, precise, and transparent repor�ng via direct satellite observa�on. Superscript 
 references contained within this document (and listed and linked at the end of this brief) show how 
 MethaneScan® draws upon the peer reviewed literature and methods established in that literature. Features 
 specific to MethaneScan® that are either proprietary or s�ll awai�ng review (i.e., techniques to be published 
 by our research team) are iden�fied with an asterisk (*). Figure 1 also outlines where we use open-source 
 data to derive data products with methods founded in techniques and results from peer-reviewed literature. 

 Overview 

 We es�mate company-level oil and gas (O&G) emission intensi�es (i.e. standardized emission 
 volume/produc�on volume) using three data products we derive from open-source satellite data and 
 publicly-available near-surface surveys, including: 

 1.  Global enhanced methane concentra�ons 
 2.  Global methane fluxes 
 3.  A georeferenced database of quan�fied emissions or emission rates 

 The full MethaneScan® 2.0 technical architecture is depicted in Figure 1. The primary input data source for 
 these products is the TROPOMI sensor  1  on board the  Sen�nel-5P satellite, which measures daily 
 atmospheric methane concentra�ons at a raw nadir resolu�on of ~5x7 km  2  . These data have been 
 extensively validated using independent methane observa�ons from spaceborne and ground sources  1-4  . 

 Global methane concentra�ons vary temporally (seasonal varia�ons) and spa�ally (at local and regional 
 scales) due to factors such as la�tudinal trends, naturally-occuring CH  4  emissions (e.g. wetland flooding),  or 
 in the case of satellite observa�ons, ground surface eleva�on. We account for poten�al biases from these 
 varia�ons by normalizing the observed methane concentra�ons to their enhancements rela�ve to the 
 background concentra�on at various spa�al scales. First we consider global backgrounds to account for 
 non-emission varia�ons* (Product #1:  XCH  4  Enhancement  ),  then derive local backgrounds  5-6  to account for 
 the build-up and transport of recent emissions in order to es�mate daily methane fluxes  5  (Product #2:  CH  4 

 Fluxes  ) and point-source emissions* (Product #3:  Plume  Database  ). Refer to Figure 1. 
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 Figure 1 
 MethaneScan® 2.0 Technical Architecture to Derive Company-Level Total Methane Intensi�es 
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 Despite having global daily sampling, cloud cover and other data quality concerns (noise and inconclusive 
 retrievals) lead to spa�al and temporal gaps in TROPOMI coverage over any given wellhead or company 
 asset. For Products #1-2, we improve both the spa�al coverage and resolu�on by resampling the ~5x7 km  2 

 data to a uniform 1x1 km  2  grid and increasing the  temporal window over which the observa�ons are 
 averaged  7  (annual mean, sampled bi-weekly). As the  number of observa�ons over a given area increases, so 
 too does the spa�al coverage, our confidence  8  in  the observed methane concentra�ons/fluxes, and the 
 resolu�on  7  , which will vary between the original  resolu�on (one observa�on) and the size of a grid cell 
 (many observa�ons from varying imaging geometries). An increase in spa�al resolu�on is especially 
 important for the accuracy of intensity-a�ribu�on to a given well and, subsequently, its owner. 

 Though we are able to achieve up to 1x1 km  2  resolu�on  with TROPOMI data, there are s�ll o�en mul�ple 
 wells within an area of this size, leading to some uncertainty regarding pinpoint a�ribu�on. Addi�onally, 
 individual plumes that we include in our analyses cannot be resampled to finer resolu�on, in which case the 
 asset-level a�ribu�on confidence is determined by the raw resolu�on of the sensor. However, the goal of 
 MethaneScan® is to standardize and report emission intensi�es at the  company level  (  not  at the well  level) 
 by aggrega�ng daily satellite observa�ons using sta�s�cal analyses. In short, a high number of observa�ons 
 per well leads to finer resolu�on and/or higher confidence in local scores when considering a single 
 geographic area, and a greater confidence  8  in company-level  scores/intensi�es when considering many 
 geographic areas in which a company operates. We provide further details suppor�ng this 
 generally-accepted sta�s�cal concept below. 

 The two major point sources of methane in the United States a�er oil and gas are coal mines and landfills. 
 All oil and gas facili�es that are geographically co-located with these point sources (i.e., within a 5 km radius 
 of a coal mine or within a 2 km radius of a landfill facility) are excluded from our dataset. 

 A Note on Resolu�on 

 The primary satellite data that we use (TROPOMI) provides global coverage at a na�ve nadir resolu�on of 
 ~5x7 km  2  . Though the satellite observes the en�re  globe daily, clouds or other quality concerns can lead to 
 temporal data gaps. Despite these gaps, a 1x1 km  2  grid cell (pixel) in the US typically has an observa�on 
 frequency in the range of daily to weekly. We leverage this high sampling frequency to improve the spa�al 
 resolu�on of temporally-averaged observa�ons  7  from  ~5x7 km  2  to up to 1x1 km  2  , where the exact resolu�on 
 depends on the number of samples available (more samples lead to be�er resolu�on). For complete 
 transparency, we dis�nguish between a pixel and a resolu�on element (RE),  the la�er of which is a 
 geographic footprint whose measurement is strictly independent of the surrounding observa�ons. 
 Regardless of post-averaging RE size, we subsample the observa�ons to a 1x1 km  2  grid, but note that  the RE 
 is usually approximately equal to the 1x1 km  2  pixel. 

 Sources of Uncertainty 

 There are two primary categories of uncertainty related to company-level scoring: quan�fica�on and 
 a�ribu�on. Quan�fica�on uncertainty is subject to the precision and accuracy with which we derive 
 observa�on values (methane concentra�on, fluxes, and emissions). On the other hand, numerous methane 
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 sources and/or companies opera�ng within a single RE lead to uncertainty in a�ribu�ng an observed value 
 to a par�cular company. We account for these uncertain�es with probability distribu�ons related to each 
 category. For example, Figure 2 demonstrates that an emission es�mate may be represented by a lognormal 
 distribu�on* (posi�ve values only), the width and loca�on of which we define based on detec�on 
 sensi�vity thresholds, the precision of satellite measurements used as input data, and the method we use 
 to derive the emission rate. The observa�on is assigned the maximum-likelihood (ML) value (i.e., the value 
 associated with the highest probability density) and the uncertainty is represented by the two parameters 
 needed to define a lognormal distribu�on. 

 Figure 2 
 An emission es�mate is defined by its probability density func�on (PDF) 

 Resolu�on and A�ribu�on Uncertainty 

 A given observa�on can only be a�ributed to an individual asset in the limi�ng case that it is the sole 
 poten�al methane source within the RE. However, our data product is primarily designed for a�ribu�on of 
 methane intensi�es to a company, not an individual well. Therefore, our a�ribu�on uncertainty depends 
 not on the number of wells in a RE, but on the propor�on of wells belonging to different opera�ng 
 companies and the overlap with other methane sources such as coal mines. Figure 3 conceptually 
 demonstrates that the confidence in a�ribu�on to a single company will decrease with increasing number 
 of operators in a RE (y-axis). Likewise, confidence will decrease as the RE increases in size (x-axis) due to a 
 possible increased overlap with other methane sources. To summarize, we have the highest a�ribu�on 
 confidence when both the RE size and number of operators are smallest (1 km and 1 operator, respec�vely). 

 The contours in Figure 3 demonstrate a typical well density in the context of these two factors, where the 
 majority of REs for resampled methane concentra�ons and fluxes (Products #1-2) have high spa�al 
 resolu�on (~1x1 km  2  ) and a small number of operators.  The vast majority of wells fall within a fine 
 resolu�on element (approaching 1x1 km  2  ) and a small  number of different operators. In a 12-month survey 
 ending September 30, 2022 of the top 25 US producers*, we found that: 

 © 2023 Geofinancial Analy�cs, Inc. All rights reserved. |  info@geofinancial.com  |  22 May 2023 

mailto:info@geofinancial.com


 5 

 ●  Over half (54%) of ac�ve wells had 3 or less unique operators in a 1x1 km  2  pixel 
 ●  One third had 2 or less unique operators 
 ●  13% had just one operator 

 In contrast to methane concentra�ons and fluxes (Products #1-2), we cannot resample individual plumes 
 (Product #3) to finer resolu�on, and the a�ribu�on uncertainty is limited by the raw resolu�on of the 
 sensor. 

 Figure 3 
 A�ribu�on Confidence by Operator Density 

 Regardless of RE size, we represent the a�ribu�on uncertainty of a given observa�on with probability 
 density func�ons based on the propor�on of assets belonging to companies opera�ng within the RE, 
 adjusted for asset type. For example, an asset that is more likely to flare may count as 1.2 assets. The 
 probability density func�ons for a�ribu�on will resemble truncated normal distribu�ons* ranging between 
 0 t/hr and the observed emission rate. An example is shown in Figure 4, in which Companies A, B, and C 
 have 12.5%, 50%, and 37% of poten�al methane sources in the pixel, respec�vely. 
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 Figure 4 
 Probability Density Func�ons (PDF) for A�ribu�ng a Given Emission to Companies within an 
 Observa�on Pixel 

 Confidence in Company-Level Scores 

 Figure 3 highlights that there is a�ribu�on uncertainty in most observa�ons; likewise, there is inherent 
 uncertainty in the quan�fica�on of concentra�ons, fluxes, and plumes. However, we do not derive company 
 scores based solely on one sample – even if we had pinpoint resolu�on – because most mid-to-large 
 producers operate in mul�ple pixels, some�mes in hundreds to thousands of them. The same opera�ng 
 companies are rarely consistently adjacent to one another or systema�cally associated with another 
 observa�on bias. Therefore, the overall company performance and uncertainty can be gleaned by 
 sta�s�cally aggrega�ng the observa�ons across all available company samples into a final distribu�on of 
 poten�al emissions. In essence, we are leveraging the principles of the Law of Large Numbers  8  (LLN)  in the 
 context of Monte Carlo  9-10  (MC) methods. The LLN states  that as the number of samples increases, the 
 average of the samples approaches the true expected value (i.e., expecta�on) of the distribu�on. We first 
 use this to derive a company’s expected methane intensity by leveraging all of its observa�ons in space and 
 �me within a given temporal window.  Consider, for example, sample Company A in Figure 5. With few 
 observa�ons (orange) the distribu�on may be biased by the scores of other companies opera�ng in close 
 proximity and it is not clear how the company is performing as a whole due to the wide and flat curve. As 
 the number of samples increases (pink), the distribu�on narrows to reveal a strong confidence in the mean 
 of Company A’s scores. In other words, the dis�nct “signature” of a company’s opera�on at many sites 
 makes it dis�nc�ve from the opera�ons of another company. We refine a company’s emissions distribu�on 
 and quan�fy the uncertainty with MC methods, in which we generate a set of company-level emission 
 values by randomly drawing the emission quan�ty and a�ribu�on from the respec�ve PDFs. Millions of 
 these samples reveal company-level methane intensity distribu�ons that account for quan�fica�on and 
 a�ribu�on uncertainty. 

 Combining the theories described above, the a�ribu�on uncertainty for our methodology* is summarized 
 in Figure 6. At 1-7 km resolu�on, the a�ribu�on uncertainty for a given wellhead is non-zero. However, an 
 individual wellhead is only one single element of a much larger whole (akin to a single brush stroke in 
 Seurat’s poin�llist masterpiece  Un Dimanche Après-Midi  à L'Île de la Grande Ja�e  ). When we expand our 
 a�ribu�on to the company level (the focus of our products), the uncertainty decreases substan�ally. 
 Likewise, the greater image of methane intensi�es across all companies comes into clearer focus. 
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 Figure 5 
 The “Signature” of a Given Company’s Methane Score is Revealed When There are a Large 
 Number of Observa�ons Across Many Sites 

 Figure 6 
 A�ribu�on Uncertainty is Low for Company-Level Scores at 1 km Resolu�on 
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 The value of comparable, rela�vely low-cost observa�ons over many facili�es, operators and geographies 
 via satellite does not preclude the value of localized measurements. In fact, local observa�ons are essen�al 
 for pinpoin�ng the loca�on of specific leaks and, in some cases, monitoring the effec�veness of efforts to 
 plug methane leaks. The u�lity of one scale, however, does not negate the u�lity of observa�ons at another 
 scale. Which scale is appropriate depends on the inference that one seeks. Our observa�ons focus on the 
 comparability of corpora�ons, on behaviors and pa�erns that rise above individual sites and the precise 
 locality of an individual methane leak. 

 In summary, direct satellite measurement – at up to 1km resolu�on – represents the best available 
 technology for  company-level  repor�ng of emission  intensi�es as well as targe�ng of 
 aircra�/drones/ground sensors when and where higher resolu�on is needed for pinpoint a�ribu�on of a 
 specific facility or leak. Observa�ons made at a pilot level via aircra�/drones/ground sensors typically 
 generate only a few samples in rela�vely limited geographic areas (i.e., they may not be representa�ve of 
 company-level emissions) whereas satellite observa�ons are performed periodically at a much larger scale – 
 and at much lower cost. 

 Confidence Metrics by Company 

 MethaneScan® scores are updated on a monthly basis. Each monthly update includes confidence metrics 
 for every company in the coverage universe (currently the top 100 listed global producers by market 
 capitaliza�on). Refer to Figure 7 for details of features and op�ons. Confidence metrics are calculated based 
 on total-observa�on Monte Carlo sampling from quan�fica�on and a�ribu�on probability density 
 func�ons. 

 Why Are Gaps Between Reported and Observed Emissions So Large? 

 Users of MethaneScan® data will note some large gaps between a company’s reported and observed 
 methane intensi�es. This disparity has been well-documented and confirmed with airborne studies  11-16  . The 
 cause has been a�ributed to a number of factors, including the lack of repor�ng regula�ons, widespread 
 use of outdated “bo�oms-up” approaches to emission es�ma�on (i.e., the  applica�on of published 
 emission factors to the total amount of purchased fuel consumed by a par�cular source  ), and findings  that 
 the top 5% of sources contribute over 50% of emissions and o�en occur during abnormal opera�ng 
 condi�ons that are likely to be missed by standard inventory procedure  11  . As repor�ng regula�ons are 
 implemented (e.g. OGMP 2.0 Framework  17  ) and direct  methane measurements become standard prac�ce – 
 as required by the 2022 Infla�on Reduc�on Act beginning January 2024 – we expect the gap between 
 reported and observed intensi�es to narrow. 
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 Figure 7 
 MethaneScan® 100 Features and Op�ons 
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 publica�on process. The papers form the basis of interpre�ng data from the TROPOMI sensor, ways of 
 addressing bias and other factors that affect signal quality over space and �me, considera�ons of resolu�on 
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