
 MethaneScan  ®  Technical Brief 
 Estimation Methods 
 A Note on Peer-Review Standards 

 We are constantly incorpora�ng new data and peer-reviewed prac�ces while we drive the development of 
 state-of-the-art es�ma�on, a�ribu�on, and uncertainty quan�fica�on methods, se�ng the highest industry 
 standard for accurate, precise, and transparent repor�ng via direct satellite observa�on. Superscript 
 references contained within this document (and listed and linked at the end of this brief) show how 
 MethaneScan® draws upon the peer reviewed literature and methods established in that literature. Features 
 specific to MethaneScan® that are either proprietary or s�ll awai�ng review (i.e., techniques to be published 
 by our research team) are iden�fied with an asterisk (*). Figure 1 also outlines where we use open-source 
 data to derive data products with methods founded in techniques and results from peer-reviewed literature. 

 Overview 

 We es�mate company-level oil and gas (O&G) emission intensi�es (i.e. standardized emission 
 volume/produc�on volume) using two data products we derive from open-source satellite data and 
 atmospheric models, including: 

 1.  Global enhanced methane concentra�ons 
 2.  Global methane fluxes, derived from (1) 

 The full MethaneScan® 2.0 technical architecture is depicted in Figure 1. The primary input data source for 
 these products is the TROPOMI sensor  1  on board the  Sen�nel-5P satellite, which measures daily 
 atmospheric methane concentra�ons at a raw nadir resolu�on of 5x7 km  2  . These data have been 
 extensively validated using independent methane observa�ons from spaceborne and ground sources  1-4  . 

 Global methane concentra�ons vary temporally (seasonal varia�ons) and spa�ally (at local and regional 
 scales) due to factors such as la�tudinal trends, naturally-occuring CH  4  emissions (e.g. wetland flooding),  or 
 in the case of satellite observa�ons, ground surface eleva�on. We account for poten�al biases from these 
 varia�ons by normalizing the observed methane concentra�ons to derive their enhancements rela�ve to 
 the background concentra�on at various spa�al scales. First we consider global backgrounds to account for 
 non-emission varia�ons* (Product #1:  XCH  4  Enhancement  ),  then derive local backgrounds  5-6  in order to 
 es�mate daily methane fluxes  5  (Product #2:  CH  4  Fluxes  ),  allowing us to account for the build-up and 
 transport of recent emissions. Refer to Figure 1. 
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 Figure 1 
 MethaneScan® 2.0 Technical Architecture to Derive Company-Level Total Methane Intensi�es 
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 Despite having global daily sampling, cloud cover and other data quality concerns (noise and inconclusive 
 retrievals) lead to spa�al and temporal gaps in TROPOMI coverage over any given wellhead or company 
 asset on a given day. For Products #1-2, we improve both the spa�al coverage and resolu�on by resampling 
 the ~5x7 km  2  data to a uniform 1x1 km  2  grid and increasing  the temporal window over which the 
 observa�ons are averaged  7  (annual mean, sampled annually).  As the number of observa�ons over a given 
 area increases, so too does the spa�al coverage, our confidence  8  in the observed methane 
 concentra�ons/fluxes, and the resolu�on  7  , which  will vary between the original resolu�on (one 
 observa�on) and the size of a grid cell (many observa�ons from varying imaging geometries). An increase in 
 spa�al resolu�on is especially important for the accuracy of emission-a�ribu�on to a given well and, 
 subsequently, its owner. 

 Though we are able to achieve up to 1x1 km  2  resolu�on  with TROPOMI data, there are s�ll o�en mul�ple 
 wells within an area of this size, leading to uncertainty regarding pinpoint a�ribu�on. However, the goal of 
 MethaneScan® is to standardize and report emission intensi�es at the  company level  (  not  at the well  level) 
 by aggrega�ng daily satellite observa�ons using sta�s�cal analyses. In short, a high number of observa�ons 
 per well leads to finer resolu�on and/or higher confidence in es�mated emission rates, and a larger 
 propor�on of observed company assets across many geographic regions in which it operates leads to a 
 greater confidence  8  in the company’s total score/intensity.  We provide further details suppor�ng this 
 generally-accepted sta�s�cal concept below. 

 Another source of a�ribu�on uncertainty is non-O&G emi�ers. The two major point sources of methane in 
 the United States a�er oil and gas are coal mines and landfills. All oil and gas facili�es that are 
 geographically co-located with these point sources (i.e., within a 5 km radius of a coal mine or within a 2 km 
 radius of a landfill facility) are excluded from our dataset. 

 A Note on Resolu�on 

 The primary satellite data that we use (TROPOMI) provides global coverage at a na�ve nadir resolu�on of 
 5x7 km  2  . Though the satellite observes the en�re  globe daily, clouds or other quality concerns can lead to 
 temporal data gaps. Despite these gaps, a 1x1 km  2  grid cell (pixel) in the US typically has an observa�on 
 frequency in the range of daily to weekly. We leverage this high sampling frequency to improve the spa�al 
 resolu�on of temporally-averaged observa�ons  7  from  ~5x7 km  2  to up to 1x1 km  2  , where the exact resolu�on 
 depends on the number of samples available (more samples lead to be�er resolu�on) and the exact na�ve 
 ground footprints. For complete transparency, we dis�nguish between a pixel and a resolu�on element 
 (RE),  the la�er of which is a geographic footprint whose measurement is strictly independent of the 
 surrounding observa�ons. Regardless of post-averaging RE size, we subsample the observa�ons to a 1x1 
 km  2  grid, but note that the RE is usually approximately  equal to the 1x1 km  2  pixel. 

 Sources of Uncertainty 

 There are two primary categories of uncertainty related to company-level scoring: quan�fica�on and 
 a�ribu�on. Quan�fica�on uncertainty is subject to the precision and accuracy with which we derive 
 observa�on values (methane concentra�on, fluxes, and emissions). On the other hand, numerous methane 
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 sources and/or companies opera�ng within a single RE lead to uncertainty in a�ribu�ng an observed value 
 to a par�cular company. We account for these uncertain�es with probability distribu�ons related to each 
 category and sta�s�cal sampling methods. For example, Figure 2 demonstrates that an emission es�mate 
 may be represented by a lognormal distribu�on* (posi�ve values only), the width and loca�on of which we 
 define based on detec�on sensi�vity thresholds, the precision of satellite measurements used as input data, 
 and the method we use to derive the emission rate. When compu�ng company scores, we use Monte 
 Carlo  8-9  (MC) methods to sample an emission rate from  its distribu�on thousands of �mes, then proceed to 
 a�ribu�on sampling. 

 Figure 2 
 An emission es�mate is defined by its probability density func�on (PDF) 

 Resolu�on and A�ribu�on Uncertainty 

 A given observa�on can only be a�ributed to an individual asset in the limi�ng case that it is the sole 
 poten�al methane source within the RE. However, our data product is primarily designed for a�ribu�on of 
 methane intensi�es to a company, not an individual well. Therefore, our a�ribu�on uncertainty depends 
 not on the number of wells in a RE, but on the propor�on of wells belonging to different opera�ng 
 companies and the overlap with other methane sources such as coal mines. Figure 3 conceptually 
 demonstrates that the confidence in a�ribu�on to a single company will decrease with increasing number 
 of operators in a RE (y-axis). Likewise, confidence will decrease as the RE increases in size (x-axis) due to a 
 possible increased overlap with other methane sources. To summarize, we have the highest a�ribu�on 
 confidence when both the RE size and number of operators are smallest (1 km and 1 operator, respec�vely). 

 The contours in Figure 3 demonstrate a typical well density in the context of these two factors, where the 
 majority of REs for resampled methane concentra�ons and fluxes (Products #1-2) have high spa�al 
 resolu�on (~1x1 km  2  ) and a small number of operators.  The vast majority of wells fall within a fine 
 resolu�on element (approaching 1x1 km  2  ) and a small  number of different operators. In a 12-month survey 
 ending September 30, 2022 of the top 25 US producers*, we found that: 
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 ●  Over half (54%) of ac�ve wells had 3 or less unique operators in a 1x1 km  2  pixel 
 ●  One third had 2 or less unique operators 
 ●  13% had just one operator 

 Figure 3 
 A�ribu�on Confidence by Operator Density 

 Regardless of RE size, we represent the a�ribu�on uncertainty of a given observa�on with 
 empirically-derived probability density func�ons based on the propor�on of assets belonging to companies 
 opera�ng within the RE. The probability density func�ons for a�ribu�on will resemble truncated 
 distribu�ons* ranging between 0 t/hr and the observed emission rate, with a shape depending on the 
 company’s propor�on of wells in the RE. An example is shown in Figure 4, in which Companies A, B, and C 
 have 1/6, 1/3, and 1/2 of poten�al methane sources in the pixel, respec�vely. These empirical PDFs are the 
 result of MC  8-9  sampling. The averages (large circles)  are equivalent to the companies’ propor�on of 
 sources, rela�ve to the total emission rate (200 kg/hr in this example). Via our sampling methods, the 
 quan�fica�on and a�ribu�on uncertain�es propagate to the company-level emissions/scores. 
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 Figure 4 
 Probability Density Func�ons (PDF) for A�ribu�ng a Given Emission to Companies within an 
 Observa�on Pixel 

 Confidence in Company-Level Scores 

 Figure 3 highlights that there is a�ribu�on uncertainty in most observa�ons; likewise, there is inherent 
 uncertainty in the quan�fica�on of concentra�ons, fluxes, and plumes. However, we do not derive company 
 scores based solely on one sample – even if we had pinpoint resolu�on – because most mid-to-large 
 producers operate in mul�ple pixels, some�mes in hundreds to thousands of them. The same opera�ng 
 companies are rarely consistently adjacent to one another or systema�cally associated with another 
 observa�on bias. Therefore, the overall company performance and uncertainty can be gleaned by 
 sta�s�cally aggrega�ng the observa�ons across all available company samples into a final distribu�on of 
 poten�al emissions. In essence, we are leveraging the principles of the Law of Large Numbers  10  (LLN)  in the 
 context of MC  8-9  methods. The LLN states that as  the number of samples increases, the average of the 
 samples approaches the true expected value (i.e., expecta�on) of the distribu�on. We first use this to derive 
 a company’s expected methane intensity by leveraging all of its observa�ons in space and �me within a 
 given temporal window.  Consider, for example, sample Company A in Figure 5. With few observa�ons 
 (orange) the distribu�on may be biased by the scores of other companies opera�ng in close proximity and it 
 is not clear how the company is performing as a whole due to the wide and flat curve. As the number of 
 samples increases (pink), the distribu�on narrows to reveal a strong confidence in the mean of Company A’s 
 scores. In other words, the dis�nct “signature” of a company’s opera�on at many sites makes it dis�nc�ve 
 from the opera�ons of another company. We refine a company’s emissions distribu�on and quan�fy the 
 uncertainty with MC methods, in which we generate a set of company-level emission values by randomly 
 drawing the emission quan�ty and a�ribu�on from the respec�ve PDFs. Millions of these samples reveal 
 company-level methane intensity distribu�ons that account for quan�fica�on and a�ribu�on uncertainty. 
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 Figure 5 
 The “Signature” of a Given Company’s Methane Score is Revealed When There are a Large 
 Number of Observa�ons Across Many Sites 

 Combining the theories described above, the a�ribu�on uncertainty for our methodology* is summarized 
 in Figure 6. At 1-7 km resolu�on, the a�ribu�on uncertainty for a given wellhead is non-zero. However, an 
 individual wellhead is only one single element of a much larger whole (akin to a single brush stroke in 
 Seurat’s poin�llist masterpiece  Un Dimanche Après-Midi  à L'Île de la Grande Ja�e  ). When we expand our 
 a�ribu�on to the company level (the focus of our products), the uncertainty decreases substan�ally. 
 Likewise, the greater image of methane intensi�es across all companies comes into clearer focus. 

 © 2024 Geofinancial Analy�cs, Inc.(GEO) | All rights reserved. |  info@geofinancial.com  |  5 January 2024 

mailto:info@geofinancial.com


 8 

 Figure 6 
 A�ribu�on Uncertainty is Low for Company-Level Scores at 1 km Resolu�on 

 The value of comparable, rela�vely low-cost observa�ons over many facili�es, operators and geographies 
 via satellite does not preclude the value of localized measurements. In fact, local observa�ons are essen�al 
 for pinpoin�ng the loca�on of specific leaks and, in some cases, monitoring the effec�veness of efforts to 
 plug methane leaks. The u�lity of one scale, however, does not negate the u�lity of observa�ons at another 
 scale. Which scale is appropriate depends on the inference that one seeks. Our observa�ons focus on the 
 comparability of corpora�ons, on behaviors and pa�erns that rise above individual sites and the precise 
 locality of an individual methane leak. 

 In summary, direct satellite measurement – at up to 1km resolu�on – represents the best available 
 technology for  company-level  repor�ng of emission  intensi�es as well as targe�ng of 
 aircra�/drones/ground sensors when and where higher resolu�on is needed for pinpoint a�ribu�on of a 
 specific facility or leak. Observa�ons made at a pilot level via aircra�/drones/ground sensors typically 
 generate only a few samples in rela�vely limited geographic areas (i.e., they may not be representa�ve of 
 company-level emissions) whereas satellites provide more frequent observa�ons  at a much larger scale – 
 and at much lower cost. 

 Confidence Metrics by Company 

 MethaneScan® scores are updated on an annual basis. Each annual update includes confidence metrics for 
 every company in the coverage universe (currently the top 100 listed global producers by market 
 capitaliza�on). Confidence metrics are calculated based on total-observa�on Monte Carlo sampling from 
 quan�fica�on and a�ribu�on probability density func�ons. 
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 Why Are Gaps Between Reported and Observed Emissions So Large? 

 Users of MethaneScan® data will note some large gaps between a company’s reported and observed 
 methane intensi�es. This disparity has been well-documented and confirmed with airborne studies  11-16  . The 
 cause has been a�ributed to a number of factors, including the lack of repor�ng regula�ons, widespread 
 use of outdated “bo�oms-up” approaches to emission es�ma�on (i.e., the  applica�on of published 
 emission factors to the total amount of purchased fuel consumed by a par�cular source  ), and findings  that 
 the top 5% of sources contribute over 50% of emissions and o�en occur during abnormal opera�ng 
 condi�ons that are likely to be missed by standard inventory procedure  11  . As repor�ng regula�ons are 
 implemented (e.g. OGMP 2.0 Framework  17  ) and direct  methane measurements become standard prac�ce – 
 as required by the 2022 Infla�on Reduc�on Act beginning January 2024 – we expect the gap between 
 reported and observed intensi�es to narrow. 
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