
‭MethaneScan‬‭®‬ ‭Technical Brief‬
‭Estimation Methods‬
‭A Note on Peer-Review Standards‬

‭We are constantly incorporating new data and peer-reviewed practices while we drive the development of‬
‭state-of-the-art estimation, attribution, and uncertainty quantification methods, setting the highest industry‬
‭standard for accurate, precise, and transparent reporting via direct satellite observation. Superscript‬
‭references contained within this document (and listed and linked at the end of this brief) show how‬
‭MethaneScan® draws upon the peer reviewed literature and methods established in that literature. Features‬
‭specific to MethaneScan® that are either proprietary or still awaiting review (i.e., techniques to be published‬
‭by our research team) are identified with an asterisk (*). Figure 1 also outlines where we use open-source‬
‭data to derive data products with methods founded in techniques and results from peer-reviewed literature.‬

‭Overview‬

‭We estimate company-level oil and gas (O&G) emission intensities (i.e. standardized emission‬
‭volume/production volume) using two data products we derive from open-source satellite data and‬
‭atmospheric models, including:‬

‭1.‬ ‭Global enhanced methane concentrations‬
‭2.‬ ‭Global methane fluxes, derived from (1)‬

‭The full MethaneScan® 2.0 technical architecture is depicted in Figure 1. The primary input data source for‬
‭these products is the TROPOMI sensor‬‭1‬ ‭on board the‬‭Sentinel-5P satellite, which measures daily‬
‭atmospheric methane concentrations at a raw nadir resolution of 5x7 km‬‭2‬‭. These data have been‬
‭extensively validated using independent methane observations from spaceborne and ground sources‬‭1-4‬‭.‬

‭Global methane concentrations vary temporally (seasonal variations) and spatially (at local and regional‬
‭scales) due to factors such as latitudinal trends, naturally-occuring CH‬‭4‬ ‭emissions (e.g. wetland flooding),‬‭or‬
‭in the case of satellite observations, ground surface elevation. We account for potential biases from these‬
‭variations by normalizing the observed methane concentrations to derive their enhancements relative to‬
‭the background concentration at various spatial scales. First we consider global backgrounds to account for‬
‭non-emission variations* (Product #1:‬‭XCH‬‭4‬‭Enhancement‬‭),‬ ‭then derive local backgrounds‬‭5-6‬ ‭in order to‬
‭estimate daily methane fluxes‬‭5‬ ‭(Product #2:‬‭CH‬‭4‬‭Fluxes‬‭),‬‭allowing us to account for the build-up and‬
‭transport of recent emissions. Refer to Figure 1.‬
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‭Figure 1‬
‭MethaneScan® 2.0 Technical Architecture to Derive Company-Level Total Methane Intensities‬

‭© 2024 Geofinancial Analytics, Inc.(GEO) | All rights reserved. |‬‭info@geofinancial.com‬ ‭|  5 January 2024‬

mailto:info@geofinancial.com


‭3‬

‭Despite having global daily sampling, cloud cover and other data quality concerns (noise and inconclusive‬
‭retrievals) lead to spatial and temporal gaps in TROPOMI coverage over any given wellhead or company‬
‭asset on a given day. For Products #1-2, we improve both the spatial coverage and resolution by resampling‬
‭the ~5x7 km‬‭2‬ ‭data to a uniform 1x1 km‬‭2‬ ‭grid and increasing‬‭the temporal window over which the‬
‭observations are averaged‬‭7‬ ‭(annual mean, sampled annually).‬‭As the number of observations over a given‬
‭area increases, so too does the spatial coverage, our confidence‬‭8‬ ‭in the observed methane‬
‭concentrations/fluxes, and the resolution‬‭7‬‭, which‬‭will vary between the original resolution (one‬
‭observation) and the size of a grid cell (many observations from varying imaging geometries). An increase in‬
‭spatial resolution is especially important for the accuracy of emission-attribution to a given well and,‬
‭subsequently, its owner.‬

‭Though we are able to achieve up to 1x1 km‬‭2‬ ‭resolution‬‭with TROPOMI data, there are still often multiple‬
‭wells within an area of this size, leading to uncertainty regarding pinpoint attribution. However, the goal of‬
‭MethaneScan® is to standardize and report emission intensities at the‬‭company level‬‭(‬‭not‬‭at the well‬‭level)‬
‭by aggregating daily satellite observations using statistical analyses. In short, a high number of observations‬
‭per well leads to finer resolution and/or higher confidence in estimated emission rates, and a larger‬
‭proportion of observed company assets across many geographic regions in which it operates leads to a‬
‭greater confidence‬‭8‬ ‭in the company’s total score/intensity.‬‭We provide further details supporting this‬
‭generally-accepted statistical concept below.‬

‭Another source of attribution uncertainty is non-O&G emitters. The two major point sources of methane in‬
‭the United States after oil and gas are coal mines and landfills. All oil and gas facilities that are‬
‭geographically co-located with these point sources (i.e., within a 5 km radius of a coal mine or within a 2 km‬
‭radius of a landfill facility) are excluded from our dataset.‬

‭A Note on Resolution‬

‭The primary satellite data that we use (TROPOMI) provides global coverage at a native nadir resolution of‬
‭5x7 km‬‭2‬‭. Though the satellite observes the entire‬‭globe daily, clouds or other quality concerns can lead to‬
‭temporal data gaps. Despite these gaps, a 1x1 km‬‭2‬ ‭grid cell (pixel) in the US typically has an observation‬
‭frequency in the range of daily to weekly. We leverage this high sampling frequency to improve the spatial‬
‭resolution of temporally-averaged observations‬‭7‬‭from‬‭~5x7 km‬‭2‬ ‭to up to 1x1 km‬‭2‬‭, where the exact resolution‬
‭depends on the number of samples available (more samples lead to better resolution) and the exact native‬
‭ground footprints. For complete transparency, we distinguish between a pixel and a resolution element‬
‭(RE),  the latter of which is a geographic footprint whose measurement is strictly independent of the‬
‭surrounding observations. Regardless of post-averaging RE size, we subsample the observations to a 1x1‬
‭km‬‭2‬ ‭grid, but note that the RE is usually approximately‬‭equal to the 1x1 km‬‭2‬ ‭pixel.‬

‭Sources of Uncertainty‬

‭There are two primary categories of uncertainty related to company-level scoring: quantification and‬
‭attribution. Quantification uncertainty is subject to the precision and accuracy with which we derive‬
‭observation values (methane concentration, fluxes, and emissions). On the other hand, numerous methane‬
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‭sources and/or companies operating within a single RE lead to uncertainty in attributing an observed value‬
‭to a particular company. We account for these uncertainties with probability distributions related to each‬
‭category and statistical sampling methods. For example, Figure 2 demonstrates that an emission estimate‬
‭may be represented by a lognormal distribution* (positive values only), the width and location of which we‬
‭define based on detection sensitivity thresholds, the precision of satellite measurements used as input data,‬
‭and the method we use to derive the emission rate. When computing company scores, we use Monte‬
‭Carlo‬‭8-9‬ ‭(MC) methods to sample an emission rate from‬‭its distribution thousands of times, then proceed to‬
‭attribution sampling.‬

‭Figure 2‬
‭An emission estimate is defined by its probability density function (PDF)‬

‭Resolution and Attribution Uncertainty‬

‭A given observation can only be attributed to an individual asset in the limiting case that it is the sole‬
‭potential methane source within the RE. However, our data product is primarily designed for attribution of‬
‭methane intensities to a company, not an individual well. Therefore, our attribution uncertainty depends‬
‭not on the number of wells in a RE, but on the proportion of wells belonging to different operating‬
‭companies and the overlap with other methane sources such as coal mines. Figure 3 conceptually‬
‭demonstrates that the confidence in attribution to a single company will decrease with increasing number‬
‭of operators in a RE (y-axis). Likewise, confidence will decrease as the RE increases in size (x-axis) due to a‬
‭possible increased overlap with other methane sources. To summarize, we have the highest attribution‬
‭confidence when both the RE size and number of operators are smallest (1 km and 1 operator, respectively).‬

‭The contours in Figure 3 demonstrate a typical well density in the context of these two factors, where the‬
‭majority of REs for resampled methane concentrations and fluxes (Products #1-2) have high spatial‬
‭resolution (~1x1 km‬‭2‬‭) and a small number of operators.‬‭The vast majority of wells fall within a fine‬
‭resolution element (approaching 1x1 km‬‭2‬‭) and a small‬‭number of different operators. In a 12-month survey‬
‭ending September 30, 2022 of the top 25 US producers*, we found that:‬
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‭●‬ ‭Over half (54%) of active wells had 3 or less unique operators in a 1x1 km‬‭2‬ ‭pixel‬
‭●‬ ‭One third had 2 or less unique operators‬
‭●‬ ‭13% had just one operator‬

‭Figure 3‬
‭Attribution Confidence by Operator Density‬

‭Regardless of RE size, we represent the attribution uncertainty of a given observation with‬
‭empirically-derived probability density functions based on the proportion of assets belonging to companies‬
‭operating within the RE. The probability density functions for attribution will resemble truncated‬
‭distributions* ranging between 0 t/hr and the observed emission rate, with a shape depending on the‬
‭company’s proportion of wells in the RE. An example is shown in Figure 4, in which Companies A, B, and C‬
‭have 1/6, 1/3, and 1/2 of potential methane sources in the pixel, respectively. These empirical PDFs are the‬
‭result of MC‬‭8-9‬ ‭sampling. The averages (large circles)‬‭are equivalent to the companies’ proportion of‬
‭sources, relative to the total emission rate (200 kg/hr in this example). Via our sampling methods, the‬
‭quantification and attribution uncertainties propagate to the company-level emissions/scores.‬
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‭Figure 4‬
‭Probability Density Functions (PDF) for Attributing a Given Emission to Companies within an‬
‭Observation Pixel‬

‭Confidence in Company-Level Scores‬

‭Figure 3 highlights that there is attribution uncertainty in most observations; likewise, there is inherent‬
‭uncertainty in the quantification of concentrations, fluxes, and plumes. However, we do not derive company‬
‭scores based solely on one sample – even if we had pinpoint resolution – because most mid-to-large‬
‭producers operate in multiple pixels, sometimes in hundreds to thousands of them. The same operating‬
‭companies are rarely consistently adjacent to one another or systematically associated with another‬
‭observation bias. Therefore, the overall company performance and uncertainty can be gleaned by‬
‭statistically aggregating the observations across all available company samples into a final distribution of‬
‭potential emissions. In essence, we are leveraging the principles of the Law of Large Numbers‬‭10‬ ‭(LLN)‬‭in the‬
‭context of MC‬‭8-9‬ ‭methods. The LLN states that as‬‭the number of samples increases, the average of the‬
‭samples approaches the true expected value (i.e., expectation) of the distribution. We first use this to derive‬
‭a company’s expected methane intensity by leveraging all of its observations in space and time within a‬
‭given temporal window.  Consider, for example, sample Company A in Figure 5. With few observations‬
‭(orange) the distribution may be biased by the scores of other companies operating in close proximity and it‬
‭is not clear how the company is performing as a whole due to the wide and flat curve. As the number of‬
‭samples increases (pink), the distribution narrows to reveal a strong confidence in the mean of Company A’s‬
‭scores. In other words, the distinct “signature” of a company’s operation at many sites makes it distinctive‬
‭from the operations of another company. We refine a company’s emissions distribution and quantify the‬
‭uncertainty with MC methods, in which we generate a set of company-level emission values by randomly‬
‭drawing the emission quantity and attribution from the respective PDFs. Millions of these samples reveal‬
‭company-level methane intensity distributions that account for quantification and attribution uncertainty.‬
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‭Figure 5‬
‭The “Signature” of a Given Company’s Methane Score is Revealed When There are a Large‬
‭Number of Observations Across Many Sites‬

‭Combining the theories described above, the attribution uncertainty for our methodology* is summarized‬
‭in Figure 6. At 1-7 km resolution, the attribution uncertainty for a given wellhead is non-zero. However, an‬
‭individual wellhead is only one single element of a much larger whole (akin to a single brush stroke in‬
‭Seurat’s pointillist masterpiece‬‭Un Dimanche Après-Midi‬‭à L'Île de la Grande Jatte‬‭). When we expand our‬
‭attribution to the company level (the focus of our products), the uncertainty decreases substantially.‬
‭Likewise, the greater image of methane intensities across all companies comes into clearer focus.‬
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‭Figure 6‬
‭Attribution Uncertainty is Low for Company-Level Scores at 1 km Resolution‬

‭The value of comparable, relatively low-cost observations over many facilities, operators and geographies‬
‭via satellite does not preclude the value of localized measurements. In fact, local observations are essential‬
‭for pinpointing the location of specific leaks and, in some cases, monitoring the effectiveness of efforts to‬
‭plug methane leaks. The utility of one scale, however, does not negate the utility of observations at another‬
‭scale. Which scale is appropriate depends on the inference that one seeks. Our observations focus on the‬
‭comparability of corporations, on behaviors and patterns that rise above individual sites and the precise‬
‭locality of an individual methane leak.‬

‭In summary, direct satellite measurement – at up to 1km resolution – represents the best available‬
‭technology for‬‭company-level‬‭reporting of emission‬‭intensities as well as targeting of‬
‭aircraft/drones/ground sensors when and where higher resolution is needed for pinpoint attribution of a‬
‭specific facility or leak. Observations made at a pilot level via aircraft/drones/ground sensors typically‬
‭generate only a few samples in relatively limited geographic areas (i.e., they may not be representative of‬
‭company-level emissions) whereas satellites provide more frequent observations  at a much larger scale –‬
‭and at much lower cost.‬

‭Confidence Metrics by Company‬

‭MethaneScan® scores are updated on an annual basis. Each annual update includes confidence metrics for‬
‭every company in the coverage universe (currently the top 100 listed global producers by market‬
‭capitalization). Confidence metrics are calculated based on total-observation Monte Carlo sampling from‬
‭quantification and attribution probability density functions.‬
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‭Why Are Gaps Between Reported and Observed Emissions So Large?‬

‭Users of MethaneScan® data will note some large gaps between a company’s reported and observed‬
‭methane intensities. This disparity has been well-documented and confirmed with airborne studies‬‭11-16‬‭. The‬
‭cause has been attributed to a number of factors, including the lack of reporting regulations, widespread‬
‭use of outdated “bottoms-up” approaches to emission estimation (i.e., the‬‭application of published‬
‭emission factors to the total amount of purchased fuel consumed by a particular source‬‭), and findings‬‭that‬
‭the top 5% of sources contribute over 50% of emissions and often occur during abnormal operating‬
‭conditions that are likely to be missed by standard inventory procedure‬‭11‬‭. As reporting regulations are‬
‭implemented (e.g. OGMP 2.0 Framework‬‭17‬‭) and direct‬‭methane measurements become standard practice –‬
‭as required by the 2022 Inflation Reduction Act beginning January 2024 – we expect the gap between‬
‭reported and observed intensities to narrow.‬
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